

 Reuters Limited 2001. This document contains information propriety to Reuters Limited, and may not reproduced, disclosed or used in
whole or in part without the express written permission of Reuters Limited

VERSION HISTORY
Version Comments
Version 0.5 ! Initial Draft
Version 0.7 ! Incorporated feedback from Howard Pein and Peter

Coates.
Version 1.0 ! Deleted UML diagrams � the JAVADOCS are much more

descriptive.
 !

JAAD

JAVA API FOR
ACTIVEDATABASE

Author: Jawaid Hakim

Contact: mailto:jawaid.hakim@reuters.com

Reuters Messaging Framework

 Page 1

INTRODUCTION.. 2

ADB REQUEST MESSAGE FORMAT .. 3

ADB RESPONSE MESSAGE FORMAT.. 4

JAVA API... 5

ADB Package ...6

Request/Reply ..6
ADB Request Statement ..6

Constraining Result Set Size ..6
ADB Bind..7
ADB Request...7

Multiple Request Statements..8
ADB Reply..9

Synchronous Request/Reply...9
Asynchronous Request/Reply ..10

Publish/Subscribe ..10
Minstance Message..11

Manager...11

Factory ...12

CONCLUSION ... 13

Reuters Messaging Framework

 Page 2

Introduction

Applications frequently reply on databases to persist critical data. The persistent storage is
typically used to store reference data (e.g. user entitlements and offerings) and the application
state (e.g. open orders and trades). At the same time, applications will frequently cache some of
the data in caches. Caching is usually done to provide quick response times to user requests.

As the state information changes in the cache or the database � for example, trades are
generated and orders are filled � the application has to ensure that the two distributed data stores
are in a consistent state. When the data cached in the application changes, it is the responsibility
of the application to write the new state to persistent storage. At the same time, if data in the
persistent storage is modified � e.g. an administrator adds a new user to the system - the
application would like to be notified so it can update its in-memory cache.

The Adapter for ActiveDatabase (ADB) software is used by applications to event-enable
databases. ADB publishing agents - in publish/subscribe mode - monitor the database for
changes and publish these changes on the TIBCO Rendezvous Bus. As a result, applications are
automatically notified of changes to the database as the changes occur.

As shown in the following diagram, when an application updates a table in a database monitored
by a publisher adapter, the adapter instance extracts data from the changed rows from database
tables and publishes them on appropriate subjects using TIBCO Rendezvous software. The
published messages are delivered to subscriber applications efficiently via multicast. A subscriber
adapter listening on the corresponding subject receives the messages and updates the relevant
tables in its associated database. The data is then available to other applications that have
access to the database.

Reuters Messaging Framework

 Page 3

In addition, applications can run arbitrary SQL queries against a database that is being monitored
by ADB agents in the request/reply mode. The result set(s) from the queries are published by the
ADB agent on the TIB Bus for consumption by the application. In the request/reply mode, the
application publishes a well-formatted message on a subject that the ADB agents have been
configured to listen for requests. ADB agents receive this request, execute the SQL against the
database, and publish the result set(s) back to the application.

The ADB software specifies the format of the request and reply messages. However, the ADB
software does not provide an API for application developers. To send a request to an ADB agent,
the application must create a request message with the appropriate fields as defined in the ADB
documentation. Similarly, to process a result set, the application must parse the response
message.

ADB Request Message Format

A request from an application to an ADB agent must follow the format specified by the ADB
software. The following describes the structure of the nested self-describing request message
that is sent by an application to the adapter:

<Request>
{
rv_Name = "closure", rvmsg_Type = RVMSG_OPAQUE, rvmsg_Data = <optional closure data>
rv_Name = "stmt", rvmsg_Type = RVMSG_RVMSG, rvmsg_Data = <Statement>
rv_Name = "stmt", rvmsg_Type = RVMSG_RVMSG, rvmsg_Data = <Statement>
rv_Name = "stmt", rvmsg_Type = RVMSG_RVMSG, rvmsg_Data = <Statement>
. . .
}

where <Statement> is a Rendezvous Message of the following structure:

Reuters Messaging Framework

 Page 4

<Statement>
{
rv_Name = "sql", rvmsg_Type = RVMSG_STRING, rvmsg_Data = <The SQL
Statement with possible bind variables>
rv_Name = "maxrows", rvmsg_Type = RVMSG_INT, rvmsg_Data = <Optional:
max number of rows to fetch>
rv_Name = "bind", rvmsg_Type = RVMSG_RVMSG, rvmsg_Data = <Bind data>
rv_Name = "bind", rvmsg_Type = RVMSG_RVMSG, rvmsg_Data = <Bind data>
rv_Name = "bind", rvmsg_Type = RVMSG_RVMSG, rvmsg_Data = <Bind data>
. . .
}

where <Bind data> is a Rendezvous Message with the following structure:

<Bind data>
{
rv_Name = "position", rvmsg_Type = RVMSG_INT, rvmsg_Data = <position of
the placeholder (starting with 1 from left to right)>
rv_Name = "column", rvmsg_Type = RVMSG_STRING, rvmsg_Data = <table-
name.column-name whose column type matches this bound variable>
rv_Name = "data", rvmsg_Type = <type of bound data>, rvmsg_Data =
<value of bound data>
}

As one can see from the above message description, it can be somewhat tricky for application
developers to get the request format just right.

ADB Response Message Format

A response from an ADB agent also has a well-defined format. The following describes the
structure of the nested self-describing response message that is sent by an ADB agent:

<Reply>
{
rv_Name = "status" rvmsg_Type = RVMSG_INT rvmsg_Data = 0
rv_Name = "results" rvmsg_Type = RVMSG_RVMSG rvmsg_Data = <Result>
rv_Name = "closure", rvmsg_Type = RVMSG_OPAQUE, rvmsg_Data = <optional
closure data>
}

where <Result> is a message in Rendezvous Message format of the following structure:

<Result>
{
name = "row" type = RVMSG_RVMSG value = <List of columns>
name = "row" type = RVMSG_RVMSG value = <List of columns>
name = "row" type = RVMSG_RVMSG value = <List of columns>
. . .
}

where <List of columns> is a message in Rendezvous Message format of the following structure:

<List of columns>
{

Reuters Messaging Framework

 Page 5

rv_Name = <column-name>, rvmsg_Type = <type of bound data>, rvmsg_Data
= <value of bound data>
rv_Name = <column-name>, rvmsg_Type = <type of bound data>, rvmsg_Data
= <value of bound data>
rv_Name = <column-name>, rvmsg_Type = <type of bound data>, rvmsg_Data
= <value of bound data>
. . .
}

If the request processing was not successful, the reply could also return an error code and error
description as shown next:

<Reply>
{
rv_Name = "status" rvmsg_Type = RVMSG_INT rvmsg_Data = <nonzero number>
rv_Name = "sql" rvmsg_Type = RVMSG_STRING rvmsg_Data = <SQL statement
which caused the error>
rv_Name = "error" rvmsg_Type = RVMSG_STRING rvmsg_Data = <error text>
rv_Name = "closure", rvmsg_Type = RVMSG_OPAQUE, rvmsg_Data = <optional
closure data>
}

The status returned is an integer specifying success or an error. Possible values are:

0: ok // No error
1: noMem // Out of Memory
2: notInitialized // Object never initialized
3: typeConversion // Type conversion error
4: dbNotFound // Database not registered
5: serverError // Error reported by server
6: serverMessage // Message from server
7: vendorLib // Error in vendor's library
8: notConnected // Lost connection
9: endOfFetch // End of fetch
10: invalidUsage // invalid usage of object
11: columnNotFound // Column does not exist
12: invalidPosition // invalid positioning within
 object,i.e.bounds err
13: notSupported // Unsupported feature
14: nullReference // Null reference parameter
15: notFound // Database Object not found
16: missing // Required piece of information is missing
17: noMultiReaders // This object cannot support multiple
 readers
18: noDeleter // This object cannot support deletions
19: noInserter // This object cannot support insertions
20: noUpdater // This object cannot support updates
21: noReader // This object cannot support readers
22: noIndex // This object cannot support indices
23: noDrop // This object cannot be dropped
24: wrongConnection // Incorrect connection was supplied
25: noPrivilege // This object cannot support privileges
26: noCursor // This object cannot support cursors
27: cantOpen // Unable to open
28: applicationError // For errors produced at the application
 level
29: notReady // For future use

Reuters Messaging Framework

 Page 6

Java API

To address this need for a programmatic interface to the request/reply messages, Reuters
Consulting has developed a Java library to enable application developers to easily create ADB
requests and to process result rows from the ADB reply. This API shields application developers
from the low-level details of the ADB message format. The following sections describe the ADB
Java class library.

ADB Package

The ADB Java API package consists of a number of classes. Each class in the package maps to
one of the request/reply message constructs specified by the ADB software.

The interesting thing to note is that each class in the com.reuters.rc.db.adb implements an
interface specified in the com.reuters.rc.db package. The com.reuters.rc.db package contains a
set of interfaces that all concrete implementations � ADB, JDBC, etc. - must implement. In
addition, the com.reuters.rc.db package provides classes for managing the static � i..e
request/reply independent - settings such as the transport, queue, timeout, etc. See Manager for
more details.

Request/Reply

In the request/reply mode an application sends a request to ADB agents. The ADB agent
processes the request and (optionally) sends a reply message back to the application. The reply
message will typically contain one more more result sets generated by executing one or more
SQL queries against the database.

ADB Request Statement

A request statement represents a SQL statement or a stored procedure that will be executed by
the ADB. The following code shows how a simple request statement is created:

try
{

String sql = �; // Get the SQL statement

AdbRequestStmt stmt = new AdbRequestStmt(sql);

}
catch (AdbBusinessException ex)
{

// Handle exception
}
catch (AdbSystemException ex)
{

// Handle exception
}

Reuters Messaging Framework

 Page 7

Constraining Result Set Size

By default, each request run against the target database can return zero or more result
sets. The maximum number of rows returned in a result set is unlimited. Often, it is
desirable to limit the maximum number of rows returned in a result set.

The following code limits the maximum number of rows returned from the request
statement to 100:

try
{

String sql = �; // Get the SQL statement

AdbRequestStmt stmt = new AdbRequestStmt(sql, 100);

}
catch (AdbBusinessException ex)
{

// Handle exception
}
catch (AdbSystemException ex)
{

// Handle exception
}

ADB Bind

The AdbBind class represents the binding of a data value to a placeholder in the SQL statement.
Not every data value sent to an SQL statement must be bound. The client can embed all these
values into the actual text of the statement instead. Embedding the values directly into the SQL
text results in better performance. However, binary values must be bound.

The following code shows how a request statement is created with one bound value:

try
{

int pos = 1; // placeholder position
String col = � // column name
Object data = � // column data

AdbRequestBind bind = new AdbRequestBind (pos, col, data);

String sql = �; // Get the SQL statement

AdbRequestStmt stmt = new AdbRequestStmt(sql, bind);

}
catch (AdbBusinessException ex)
{

// Handle exception
}
catch (AdbSystemException ex)
{

// Handle exception
}

Reuters Messaging Framework

 Page 8

The library allows zero or more bind data to be associated with a request statement.

ADB Request

The AdbRequest class is used to create and send a request. The following code shows how a
simple request is created and sent to ADB agents:

try
{

String sql = �; // Get the SQL statement

AdbRequestStmt stmt = new AdbRequestStmt(sql);

AdbRequest req = new AdbRequest(stmt);

String sendSubj = �; // Get the send subject

// Send the request without waiting for a response
req.send(sendSubject);

}
catch (AdbBusinessException ex)
{

// Handle exception
}
catch (AdbSystemException ex)
{

// Handle exception
}

The example shown above is intentionally simple and does not use many of the features provided
by the library. In this example, one SQL statement with no bind variable is created and no
response is expected. The library fully supports multiple SQL statements with bind variables
along with processing of both synchronous and asynchronous responses.

Multiple Request Statements

A single ADB request can contain multiple request (SQL) statements. The following
code constructs two request statements within a single ADB request:

try
{

String sql1 = �; // Get the first SQL statement
String sql2 = �; // Get the second SQL statement

AdbRequestStmt[] stmts = {new AdbRequestStmt(sql1), new
AdbRequestStmt(sql2)};

AdbRequest req = new AdbRequest(stmts);

String sendSubj = �; // Get the send subject

// Send the request without waiting for a response
req.send(sendSubject);

}
catch (AdbBusinessException ex)

Reuters Messaging Framework

 Page 9

{
// Handle exception

}
catch (AdbSystemException ex)
{

// Handle exception
}

ADB Reply

Freqently, an application will send a request to an ADB agent and expect a response message in
return. The library supports this by providing facilities for both synchronous and asynchronous
request/reply.

Synchronous Request/Reply

The following code sends a request and waits for a reply message. The length of time the request
waits for a reply is configured through the DbManager class. The reply can contain zero of more
result sets and each result set can contain zero or more rows.

try
{

String sql = �; // Get the SQL statement

AdbRequestStmt stmt = new AdbRequestStmt(sql);

AdbRequest req = new AdbRequest(stmt);

String sendSubj = �; // Get the send subject

// Send the request and wait for response
AdbReply reply = Req.sendRequest(sendSubject);

If (reply.isValid())
{
 // Process each result set � result set index starts at 1
 for (int res = reply.getResultSetCount(); res > 0; --res)
 {
 int rowCount = reply.getResultRowCount(res);

 // Process result set � row index starts at 0
 for (int row = rowCount � 1; row >= 0; --row)
 {
 TibrvMsg row = reply.getResultRow(res, row);

 // Process row
 }
}

}
else
{
 // Request failed � get the ADB status code and description
 int errCode = reply.getStatus();
 String errDesc = reply.getError();

 // Process error
}

}

Reuters Messaging Framework

 Page 10

catch (AdbBusinessException ex)
{

// Handle exception
}
catch (AdbSystemException ex)
{

// Handle exception

}

Asynchronous Request/Reply

Applications can also send a request to ADB and receive the reply on an application callback.
This allows the application to process the reply asynchronously.

The following code sends a request. Instead of waiting for the reply, the application registers an
application callback. When the reply is received the application callback is triggered by the library.

try
{

String sql = �; // Get the SQL statement

AdbRequestStmt stmt = new AdbRequestStmt(sql);

AdbRequest req = new AdbRequest(stmt);

String sendSubj = �; // Get the send subject

String replySubj = �; // Get the reply subject

DbRequestCallback cb = �; // Get the callback

// Send the request � the reply is received asynchronously by
// the application callback
req.sendRequest(sendSubject, cb, replySubj);

}
catch (AdbBusinessException ex)
{

// Handle exception
}
catch (AdbSystemException ex)
{

// Handle exception
}

// Reply handler callback
public class AppCallback implements DbRequestCallback
{

public void onMsg(TibrvListener listener, DbReply reply)
{
 // Process reply from ADB

 // Close the listener if no more messages are expected
}

}

Publish/Subscribe

Reuters Messaging Framework

 Page 11

ADB publishing agents monitor the database for changes and publish the updates on the TIBCO
Bus. The updates can be published either in the TIBCO/Rendezvous or the Minstance data
format.

For the TIBCO/Rendezvous format the ADB Reply class described above can be used to parse
the data.

The Minstance data format is required if parent/child relationships exist in the database and the
child rows are required to be published. In addition, the Minstance format is useful because it
includes the name of the source table from which the data is being published. The library
provides a set of classes for parsing the Minstance data format messages.

Minstance Message

An Minstance message contains a set of meta-data that provides descriptive information about
the published data. This meta-data includes information like the message version, type, etc. The
Java API allows the application to easily parse the meta-data and the actual content.

The following code shows how a Minstance messges can be parsed.

try
{
 // Get the ADB publication message
 Tibrv pubMsg = �;

 AdbMInstancePubMsg mInstMsg = new AdbMInstancePubMsg(pubMsg);

 // Get the message version
 Integer msgVer = mInstMsg.getMsgVersion();

 // Get the message type
 Integer msgType = mInstMsg.getMsgType();

 // Get the class (table) name
 String tblName = data.getClassName();

 // Get the ADB agent id
 String agentId = data.getAgentId();

 // Get the ADB opcode �INSERT, DELETE, UPDATE, UPSERT
 AdbOpcode opCode = data.getOpcode();

 // Get the sequence number
 Long seqNo = data.getSequence();

 // Get the data � includes all parent/child data
 DbPubMsgData data = mInstMsg.getData();

 // Get the child row data
 DbChildPubMsgData[] childRows = data.getChildRowData();

}
catch (AdbBusinessException ex)
{

// Handle exception
}
catch (AdbSystemException ex)
{

// Handle exception

}

Reuters Messaging Framework

 Page 12

Manager

The application can configure the library by using static methods of the DbManager class. The
DbManager class allows the application to specify defaults for the transport (used for publishing
request messages), the queue (used for receiving asynchronous reply messages), and the
timeout (used for synchronous request/reply messages). Once the defaults have been
established, the application does not need to specify the values for these objects. It is also
possible for the application to explicitly provide values for the transport, queue, and timeout at the
time of making the method call on the relevant classes � these explicit values settings override
the defaults.

The following code shows how DbManager can be used to configure the library.

try
{
 // Get the transport
 TibrvTransport rvTrans = �;

 // Get the queue
 TibrvQueue rvQueue = �;

 // Get the default timeout
 double timeout = �;

 DbManager.setDefaults(rvTrans, rvQueue, timeout);
}
catch (DbBusinessException ex)
{

// Handle exception
}
catch (DbSystemException ex)
{

// Handle exception
}

Factory

This library was designed to allow applications to customize the persistence strategy without
requiring extensive code change. For example, it might be the case that an application requires
database access via ActiveDatabase as well as through JDBC.

To allow such flexibility, the library defines a set of interfaces - in the com.reuters.rc.db package -
that each concrete implementation must provide. For example, classes in the com.reuters.rc.adb
package implement these interfaces.

Given this framework, a new database access stretegy can be implemented by simply creating a
new set of classes that implement the relevant interfaces in the com.reuters.rc.db package. Once
the new classes have been created, applications can use these new classes with minimal code
change.

To further aid this effort, the library defines the com.reuters.rc.db.DbFactory interface. A concrete
implementation of this interface is provided by the com.reuters.rc.AdbFactory class. If the
application uses a factory instance to create all other class instances then switching from one

Reuters Messaging Framework

 Page 13

implementation (e.g. ADB) to another (e.g. JDBC) will be as simple as swapping one factory for
another.

The following code shows how an application can use the AdbFactory class to create a request:

try
{
 // Get the factory
 DbFactory fact = getFactory();

 DbRequestStmt stmt = fact.getRequestStmt(sql);

 DbRequest req = fact.getRequest(stmt);

}
catch (DbBusinessException ex)
{

// Handle exception
}
catch (DbSystemException ex)
{

// Handle exception
}

public static DbFactory getFactory()
{

// Read application configuration and return appropriate factory

if (config.isAdb())
 return AdbFactory.getInstance();
else if (config.someOther())
 return SomeOtherFactory.getInstance();
 �

}

Conclusion

This Java library provides type-safe access to the ADB request/reply messages. Use of this
library should result in significantly less effort for application development teams in using the ADB
software.

